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ON THE ERGODICITY OF BILINEAR TIME SERIES

MODELS AND SOME APPLICATIONS

S. I. Akamanam, M. Bhaskara Rao, and K. Subramanyam

ABSTRACT

Existence, strict stationary and ergodicity of Bilinear Time

Series Models for a given input White Noise process and parameter

values is studied in detail in this paper. Using ergodicity of the

model, estimation of the parameters by the method of moments is

suggested and some comparisons are made with the method of least

squares. r

Key Words: Bilinear Time Series Models, Stationarity, Ergodicity,

Method of moments and Method of Least Squares.
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1. Introduction. Let Xt , t E Z and et, t e Z be two stochastic

processes defined on some probability space (2,B,P), where

Z {...-l,0,l,...}. Xt, t e Z is said to be a Bilinear Model with

respect ot the process et, t C Z if

r h
Xt a=J1l ajXt-j + J1l bj et-j + I I X  e

+ et a.e.[P] for every t in Z. (1.1)

We designate et, t £ Z to be the input or unobservable process and

Xt, t e Z the output or observable process. The first part on the

right side of (1.1) can be identified as the auto-regressive part of

the process Xt, t e Z, the second part as the moving average part of

Xt, t e Z and the third part as the 'pure' bilinear part of Xt, t C Z.

A study of bilinear models, therefore, subsumes the study of auto-

regressive,movng-average and mixed auto-regressive-moving-average models.

There are two basic questions that arise in this context.

(1) Suppose et, t e Z; aj'S; b 's and Sij s are all given.

Under what conditions, is there a process Xt , t e Z satisfying (1.1)?

We assume that et, t e Z is independent, identically distributed with

2 2
E et -0 and E et  < G.

(2) If a process Xt, t e Z exists satisfying (1.1), is it

strictly stationary and also ergodic?

The study of bilinear models was initiated by Granger and

Andersen [2] and Subba Rao [4]. The problem of existence of a

process Xt, t e Z conforming to (1.1) has been studied by several

authors in some special cases. Tuan Dinh Pham and Lanh Tat Tran (7]

established the existence of a strictly stationary process Xt, t C Z
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satisfying

Xt  e t + a Xt_ + b Xt_1 et_I a.e.[P]

for every t e Z under some conditionsinvolving a,b and a Guegan [3]

studied the existence problem of a process Xt . t e Z satisfying

Xt  et + b X et_ a.e.[P]

tt-2tl

for every t in Z. Subba Rao and Gabr [6] gave a set of sufficient

conditions for the existence of a second order stationary process

Xt, t e Z satisfying

Xt + aj Xt_j - et + f b Xj etj a.e.[P]

for every t in Z. Bhaskara Rao, Subba Rao and Walker [1] showed that

under the same set of sufficient conditions given by Subba Rao and

Gabr [6], there exists a strictly stationary process Xt, t E Z

satisfying

.t + aj Xt_j , ej + bj Xt_j et_j  a.e.(PJ- jl j~l

for every t in Z. This model is more general than the one considered

by Subba Rao and Gabr (6] in the sense that p and q given above could

be different. All these models are special cases of (1.1). The

, initial step in the proof of existence theorems given in Subba Rao and

Gabr [6] and in Bhaskara Rao, Subba Rao and Walker [1] is to rewrite

the above models in vectorial form. We pursue the same line of tack in

studying the model (1.1).

In all the bilinear models studied in the literature, the moving

average part has not been included. The purpose of this paper is to

include the moving average part and also meet the following goals,

using the method ginen in Dhaskara Rao, Subba Rao and Walker (1].

4.' """'"-- - " "' . . . . .-" ', "• ,
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(1) Give a set of sufficient conditions under which there is a

strictly stationary process Xt, t C Z satisfying (1.1). ((1.1) has

moving average component.)

(2) Show that such a process is also ergodic.

(3) Show that such a process is unique

(4) Exploiting the ergodicity of the process, obtain estimators

of the parameters of the process in a model fitting problem.

.
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2. Vectorial representation.

We represent the model (1.1) in vector form. Suppose the

processes X, t E Z and et e Z satisfy (1.1). Let

p =max [r,m},

g = min {M,Z),

q - max {h,g},
(p - r)

4a 1a 2  a 3 ... a r0 0 ... 0 0

1 0 0 ... 0 0 0 ... 0 0

A

PXP 0 1 0 ... 0 0 0 0 0

0 0 0 ... 0 0 0 ... 1 0

cT

lp

- 0 for all j =h+ 1, h +2, ... ,

when h < g

B~ 
0

PX * ... *0 0 0 0

(p-m+j -

for for j - g + 1, g + 
2,...,q when h > g

T

lx - (Xts XtP1...)Xt i) t E Z,

t t-~
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where 0 is the matrix of appropriate order in which every entry is

zero and T stands for operation transpose of a matrix.

Theorem 1 If Xt, t e Z and et t e Z satisfy (1.1), then
4.

= C et +AX b e
tt

+ B t_j et_j a.e. [P] (2.1)

j=1

for every t in Z.

Proof. By direct verification.

"-. We restate, in view of the above theorem, the existence problem

as follows.

Let et, t e Z be a sequence of independent identically distributed
.2 2

random variables with E M 0 and E  = a < -. Let C , A ,
pXl pxp pXl

j - 1,2,...,q and Bi. J - 1,2 ,...,q are given matrices with real

entries. Is there a strictly stationary process Xt, t c Z satisfying

(2.1)? 
pX1

' N...

-.

.1
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3. Existence theorem

In this section, we show that under the condition stipulated in

/the main theorem of Bhaskara Rao, Subba Rao and Walker [1, p. 106],

-r the strictly stationary process X t, t e Z satisfying (2.1) not only

exists but also ergodic and essentially unique.

Theorem 2 Let et, t e Z be a sequence of independent identically

distributed random variables defined on a probability space (Q,B,P)
~2 2,B

with E et - 0 and E et = a < -. Let A, B, B2,..., B be q + I

matrices of each of order of px p and

r = A ®A+a2(Bl  B,

r . a 2 B ( 2Aj'B + +A jB )
j 1 1 2 J- B 1)

+ (Aj -1 
1 + AJ - 2  A +...+BAj_) ( B+(Bj B

j , 2,3,...,q,

where ® is the symbol for Kronecker product of matrices.

Suppose all the eigenvalues of the matrix

r1  r2 . r.. q- 1 rq

L o
2 2 p2  0 ... 0 0
pqx pq

0 12, 0 0

0 0 ... 12 0
p

have moduli less than unity. Let C , j - 1,2,...q be given column

vectors then there exists a strictly stationary and ergodic process

Xt  t e Z conforming to the model

+pb +1X

.t =Cet A t. 1  + j b j etj Bj t_j  et_ j  a.e.[P] (3.1)
jol j I

for every t e Z. Further, if a process Ut, t c Z conforms to the above

hb..
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bilinear model (3.1), then

- A a.e.[P]

- for every t in Z.

Proof. Let the process S n, t Z be defined as follows.

S = 0 if n< 0,

-C et if n - 0,

- C et + J bj et-j + (A + B1 e t_) Snl,t 1
-1

+ B S e ,f>
q --n-2,t-2 t-2

+ B q S n_qp t - q e t-q, if n > 0

for every t in Z. We, first, observe that for each fixed n,

S ntt , Z is a strictly stationary process. Further, for each fixed

n, Snt is measurable with respect to the a-field a{e t , et_1 ,... }

for every t in Z, where a{e t, et l,...} is the smallest sub a-field

of 8 with respect to which each of et, etl.., is measurable.

* Consequently, the tail a-field of {S ,t t C Z}=
-00-n4t

toU {S,t' -1,t-"to 1 C U { e t  e tail a-field of

{et, t e Z}. Hence the process t £ Z is ergodic. We show that

Slir , exists almost surely [P] for each fixed t in Z. If Xt, t e Z is

the almost sure limit of S n > 1 for every t in Z, then it is

obvious that the process X, t £ Z conforms to the bilinear model (3.1).

To show that S converges almost surely as n + -for every fixed

t in Z, define

"- .. - n t .2 nS , t - S n -l , t , n , t C : Z .

= (A + B1 e t _ ) sn-l,t-l + B2 -n-2,t-2 et-2

B q -n-q,t-q et-q
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If we show that E I Lsn t)l < k X it follows that Sn t n > 1

converges a.e.[P] for every t e Z. See Step 20 in Bhaskara Rao,

Subba Rao and Walker [1, p. 1061, where X is the maximum absolute

.theigenvalue of L, (st) is the i - component of gnt and k is
-n't I '

some positive constant. Following Steps 30 to 100 in Bhaskara Rao,

Subba Rao and Walker [1], one can show that E 1(s til < k Xn/ 2 for

every n and i = 1,2,...,0.

The limit process Xt, t e Z is also ergodic. This follows from

the fact that X is measurable with respect to o(et , et_,... } for

every t in Z.

Now, we prove uniqueness. Let Ut , t e Z be a process conforming

to (3.1). For each n > q and t e Z, let

3..

V n'. U t St"

Then V t (A + B, e V + B V-- , 1 t-1) -l't-1 +  2 Vn-2,t-2

+...+ B Vq -n-qt-q"

As above, ofte can show that E 1(Vn t'd < k n / 2 for every n, tforevey n tand i.

Since X < 1, it follows that lim V = 0 a.e.[P]. But

q l 't lim (U -lira " a -S
-nt 1"M -t -n ,t

- -0 a.e.[P].

This completes the proof of uniqueness part of the theorem.

Remarks.

(1) Theorem 2 remains valid if we have a moving average part of

general order not necessarily of order q same as the order of the pure

bilinear part.

(2) The most important feature that emerges by comparing

Theorem 2 above and the main theorem in Section 4 of Bhaskara Rao,
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Subba Rao and Walker [1, p. 1061 is that the presence of moving average

part makes no impact on the existence problem. This is also typical of

Linear processes as the following corollary shows.

Corollary 3 Let e t, t e Z be a sequence of independent identically

distributed real random variables with common mean 0 and variance

2a < M. Then there exists a strictly stationary process t.t C Z

satisfying
r 2

Xt = I aj X- + 1 bj et..j + et a.e.4P] (3.2)

for every t in Z if the roots of the polynomial

f(x) a 1 x - a 2x 2 a. r a x

are in absolute value greater then unity.

Proof. The model (3.2) can be put in the vector form as follows.

Let p r, q .

a1 a2 a 3 ... a - a

1 0 0.. 0 0

A

pxp 0 1 0 ... 0 0

0 0 0.. 1 0

b T (bjpOO,...1 O), j - 12..q
-j

lx p

C T (1,0,0,...0), and
lx p

T (X X C t Z.
.Kt tIt-1'* t-p+l

lxp

Then

-C et-l + A X + J b~ et a.e.(P] (3.3)

for every t in Z.
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A sufficient condition for the existence of a strictly stationary

real vector-vlaued process Xt, t e Z satisfying (3.3) is that the

maximum absolute eigenvalue of A CX A is less than unity. This con-

"- dition is equivalent to the condition that the maximum absolute eigen-

value of A is less than unity. This in turn is equivalent to the

'. condition that the roots of the characteristic polynomial are less than

unity in modulus. This completes the proof.

-

-I4..

ir.-.-
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4. On estimation of the parameters of a bilinear model

Suppose X t . t e Z is a real valued stochastic process satisfying

r
Xt = et + I b et + a X t_j  a.e.[P]

:j=1 Jj=l

for every t in Z for some sequence et, t e Z of independent identically

distributed random variables with E et a 0 and E em < - for sufficiently
t

large m. There are q + r + 1 parameters a, a., a2,...,a 2, bI, b2 ,...,br

in the above model which we want to estimate based on realizations

x1, x2 ,....xN of XI, X2,....XN respectively. Assuming the process

Xt, t e Z to be strictly stationary and ergodic, we proceed with the

problem of estimation as follows. (Assume, for simplicity, that the

process et, t e Z is completely specified.)
2 q+r+l

Step 1 Calculate E Xt, E Xt  E XtS fsa '  .,aq b 2

Step 2 Let E Xt = f ai, a2 ....a.... br)

s - 1,2,...,q+r+l.

Step 3 Estimates based on the Method of Moments.

Solve the equations
. a b1 N

f (a, ... a ... x,

s - 1,2,...,q+r+l

in the unknowns a all a2,..., q, b l b2P'"br"

This method is justified on the grounds that the process

s
Xt, t e Z is strictly stationary and ergodic for s =1,2,3,... and that

1 N E s
i t 

= EXt a.e.[P]

for every s >_ 1.

An example

Let et, t £ Z be a sequence of independent identically distributed

random variables with et having normal distribution with mean 0 and

variance unity. Let Xt, t e Z be the strictly stationary and ergodic
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process satisfying

X~ t + aX +b X 1 ei a.e. [P]..., = e t + .X t_1 + Xt-1 et_ 1  e.P

for every t in Z with a- b -0.4. It can be checked that E Xt  -
-: 2 2 2---2

and E X 2 (1 / 1 -a - b 2) (1 + 2 b (1+a) / (1 -a)).
t

We have generated 1000 observations x1,, x2 ,... x 0 0 from the above

model. The estimates a and b of a and b respectively based on the

method of moments are obtained by solving the equations

~1000
a - 10 -" 0.5854906

1-b 1000 i=l

and

S1 2 .2 o 2
S 1 + 1000 x0 i - 2.197616

1-a 1 -a i-

in the unknowns a and b. The solution is given by a - 0.3963

and = 0.4281.

Following Subba Rao [4],[5], one can apply the method of least squares

to minimize Q(a,b) - I e2 over a,b, where et . x - a x - b xt_ e t_ I
t

t - 1,2,...,1000, to obtain the following recursive equations.

___t ae t -

ae ~ ge 1

; . t  t_1
-- + b x t-1  3b -et ,

2 2
- +b t-l

2 2 0,
- -a2  t-1 aa 2

a2 ea2 ea'* 2et a2et 1  e1
-- + b x_ - + 2 xt_ t- 0,
2 b tb 2 +x 1  3

and
2 2

.3a e ~ ae 1  ae__
" 2t + x t1+ b - O,

ab t- b t-1  aaab -

t - 1,2,...,1000.

q%."

IF.
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Let GT (a,b) a(Q(ab) ,Q(ab) ) and
aa 3b

a 2Q(a,b) D 2Q(a,b)
aa2  3a3b

H(a,b) =

3 2Q(ab) 3 2Q(a~b)
9aab 8b2

where one can easily check that

aQ(ab) 1000 aeaa 2 1 e,- 33a et 'a
t=l

aQ(ab) 1000 3et
, -b et

t=l

1000 (aet 1000 t
2Q(a'b) -2 a + 2 1 et 2

8 a t l til 3a

a2Qab 1000 [aet 2 a2e
3Q(a'b) - 2 LL + 2

a b t - tl 3b 21b
2

and

3 ~).2 1000 [3et ) (et 1000ljO ta2Q(ab) 2 . 3 --3 +2 •t
t-l 3a J t-l 3&3b

Starting with initial values a(0), b(0 ) and

3e 3e a2 ea2 ea2 e_le _e 20 20 2e

Xo - 0 0 0 - = b 0a 0, we obtain the Newton-
0O 3a a3b 2 2 3ab

aa 3b

Raphson iterative equation

a (k+l) a f(k)j - [H(a(k), b(k))1 - 1 G(a(k), b(k)

I "" )I
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Starting with a(0) = b(O) " 0.1, using the recursive equations above,

the Newton-Raphson method gives

a - 0.3874

b - 0.3958

" .correct to 4 decimal places. These values are very close to the true

parameter values a - b - 0.4. Estimates obtained by the method of

moments do not come as close to the true parameter values as those

obtained by the method of least squares for smaller samples. But the

method of moments has computational simplicity that the method of least

, squares lacks. One could use the estimates given by the method of

p. moments as the starting-up values for the method of least squares

cranking up the Newton-Raphson machinery in small samples. However,

if the sample size is large, both methods give values very close to

.- . the true parameter values.

Concluding Remarks

We have shown that under some simple condition in the spectral

radius of a matrix, Bilinear models do exist, are stationary and

ergodic. Ergodicity of the process makes the method of moments as a

natural technique for adoption to estimate the parameters of the 
model.

This method is compared with the usual method of least squares 
and

S. found to be satisfactory in large samples.
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